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 Abstract 

 This  project  presents  a  sentiment  analysis  system  for  Marathi  text,  utilizing  Natural  Language 

 Processing  (NLP)  techniques  to  classify  the  sentiment  as  positive,  neutral,  or  negative.  The 

 primary  focus  of  the  work  is  on  the  preprocessing  of  Marathi  text  data,  which  includes 

 tokenization,  stop-word  removal,  and  normalization  processes  tailored  to  the  Marathi  language. 

 A  Multinomial  Naive  Bayes  model  is  employed  as  the  predictive  mechanism,  trained  on  labeled 

 Marathi  text  datasets.  The  model  is  evaluated  based  on  its  ability  to  accurately  classify  sentiment 

 across  a  variety  of  text  samples.  Results  demonstrate  the  effectiveness  of  machine  learning 

 methods  like  Multinomial  Naive  Bayes  in  handling  sentiment  classification  tasks  in  low-resource 

 languages  such  as  Marathi.  This  study  contributes  to  the  growing  field  of  NLP  for  regional 

 languages  and  provides  a  foundational  approach  for  further  research  and  development  in 

 sentiment analysis systems. 
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 Chapter 1 

 Introduction 

 1.1 Description 

 Sentiment  analysis,  also  known  as  opinion  mining,  is  an  essential  task  in  Natural  Language 

 Processing  (NLP),  aimed  at  determining  the  sentiment  conveyed  by  a  given  piece  of  text. 

 This  project  focuses  on  performing  sentiment  analysis  on  Marathi  text,  a  widely  spoken 

 language  in  India  but  relatively  underrepresented  in  the  field  of  NLP  research.  The  main 

 objective  is  to  classify  the  sentiment  of  the  text  as  positive,  neutral,  or  negative  using 

 machine learning techniques. 

 Due  to  the  rich  morphology  and  syntactic  complexity  of  Marathi,  sentiment  analysis  poses 

 unique  challenges,  especially  in  the  preprocessing  phase.  Marathi  text  often  contains 

 linguistic  variations,  informal  expressions,  and  a  lack  of  standardized  writing,  all  of  which 

 make  it  difficult  to  handle  using  conventional  NLP  methods.  This  project  employs  a 

 Multinomial  Naive  Bayes  model  to  predict  sentiment  based  on  features  extracted  from 

 preprocessed  text  data.  Preprocessing  steps  such  as  tokenization,  stop-word  removal,  and 

 normalization  are  customized  to  accommodate  the  specific  characteristics  of  the  Marathi 

 language.  The  dataset  for  this  project  comprises  labeled  Marathi  text  samples,  which  are 

 essential for training and validating the logistic regression model. 

 The  significance  of  this  project  lies  in  its  contribution  to  the  growing  body  of  work  on 

 sentiment  analysis  for  low-resource  languages.  While  sentiment  analysis  has  been  widely 

 explored  for  languages  like  English  and  Hindi,  limited  research  has  been  conducted  for 

 regional  languages  like  Marathi.  The  implementation  of  the  Multinomial  Naive  Bayes  model 

 demonstrates  how  machine  learning  algorithms  can  be  effective  when  applied  to  such 

 low-resource  languages  with  appropriate  preprocessing  techniques.  This  study  provides  a 

 foundation  for  further  exploration  in  NLP  for  Marathi,  opening  avenues  for  future  research 

 and more sophisticated language models. 
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 1.2 Problem Formulation 

 The  rise  of  digital  content  in  regional  languages  has  created  a  growing  demand  for  sentiment 

 analysis  in  low-resource  languages  like  Marathi.  However,  most  existing  Natural  Language 

 Processing  (NLP)  tools  and  models  are  primarily  designed  for  widely  spoken  languages  such 

 as  English,  leaving  regional  languages  with  limited  resources  and  tools  for  sentiment 

 analysis.  Marathi,  despite  being  one  of  the  most  widely  spoken  languages  in  India,  lacks 

 sufficient datasets, linguistic resources, and tailored models for effective sentiment analysis. 

 This  project  aims  to  address  the  challenge  of  performing  sentiment  analysis  on  Marathi  text 

 by  leveraging  supervised  machine  learning  techniques.  The  primary  problem  is  to  classify 

 the  sentiment  of  a  given  Marathi  text  as  either  positive,  neutral,  or  negative.  To  achieve  this, 

 the project focuses on the following key challenges: 

 1.  Text  Preprocessing  for  Marathi:  Marathi  text  presents  unique  linguistic  characteristics 

 such  as  complex  morphology,  informal  variations,  and  the  absence  of  a  standardized  form 

 of  writing.  Preprocessing  steps  such  as  tokenization,  normalization,  and  stop-word 

 removal need to be carefully adapted to handle these intricacies. 

 2.  Feature  Extraction  and  Representation:  Converting  raw  text  into  a  structured  format 

 suitable  for  machine  learning  involves  selecting  appropriate  features,  such  as  word 

 frequencies  or  TF-IDF  scores,  that  can  capture  the  sentiment-related  patterns  in  Marathi 

 text. 

 3.  Sentiment  Classification:  The  task  is  to  develop  a  model  that  can  accurately  predict 

 whether  a  piece  of  text  conveys  a  positive,  neutral,  or  negative  sentiment.  Multinomial 

 Naive  Bayes  is  chosen  as  the  classification  algorithm  due  to  its  efficiency,  scalability,  and 

 strong  performance  in  text  classification  tasks,  particularly  when  dealing  with  word 

 frequency features in multiclass problems. 

 4.  Model  Evaluation  and  Optimization:  It  is  necessary  to  assess  the  model's  performance 

 using  appropriate  evaluation  metrics  such  as  accuracy,  precision,  recall,  and  F1-score. 
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 Additionally,  techniques  like  hyperparameter  tuning  may  be  required  to  optimize  the 

 model's performance. 

 The  goal  of  this  project  is  to  create  a  sentiment  analysis  system  that  effectively  handles  the 

 challenges  of  working  with  Marathi  text,  offering  reliable  sentiment  classification  for 

 low-resource languages. 

 1.3 Motivation 

 The  explosion  of  user-generated  content  on  social  media,  blogs,  and  forums  in  regional 

 languages  has  created  an  increasing  demand  for  sentiment  analysis  in  languages  beyond 

 English  and  other  globally  dominant  languages.  Marathi,  spoken  by  over  83  million  people, 

 is  one  such  regional  language  that  has  seen  significant  growth  in  online  content.  However, 

 despite  its  widespread  use,  Marathi  remains  a  low-resource  language  in  terms  of  Natural 

 Language  Processing  (NLP)  tools  and  datasets,  making  it  difficult  to  apply  advanced 

 sentiment analysis techniques. This project is motivated by the need to bridge that gap. 

 The  growing  influence  of  sentiment  analysis  in  various  fields  such  as  market  research,  public 

 opinion  monitoring,  and  customer  feedback  analysis  further  highlights  the  importance  of 

 extending  these  capabilities  to  regional  languages.  In  multilingual  societies  like  India, 

 analyzing  sentiment  in  native  languages  such  as  Marathi  can  provide  deeper  insights  into 

 public  sentiment  that  are  otherwise  inaccessible  through  analysis  in  English  or  Hindi. 

 Developing  NLP  tools  for  Marathi  can  enhance  communication  and  engagement  across 

 sectors,  including  government,  businesses,  and  social  platforms,  by  providing  a  better 

 understanding of user opinions and emotions. 

 While  deep  learning  methods  have  gained  popularity  in  recent  years,  traditional  algorithms, 

 when  paired  with  language-specific  preprocessing  techniques,  can  still  deliver  reliable  and 

 interpretable  results,  especially  in  low-resource  settings.  This  project  seeks  to  demonstrate 

 that  by  focusing  on  effective  preprocessing  tailored  to  Marathi  text,  a  simple  yet  powerful 

 machine learning model can achieve satisfactory sentiment classification outcomes. 
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 1.4 Proposed Solution 

 1. Dataset: L3CubeMahaSent 

 The  dataset  used  for  this  project  is  L3CubeMahaSent,  which  is  the  largest  publicly  available 

 Marathi  sentiment  analysis  dataset  to  date.  This  dataset  consists  of  18,378  Marathi  tweets, 

 manually  labeled  into  three  sentiment  categories:  positive  (1),  neutral  (0),  and  negative  (-1). 

 The  dataset  is  representative  of  real-world  data  as  the  tweets  are  provided  in  their  original, 

 unprocessed form. 

 Dataset Statistics: 

 Training set: 12,114 tweets (4,038 per class) 

 Test set: 2,250 tweets (750 per class) 

 Validation set: 1,500 tweets (500 per class) 

 The  dataset  is  carefully  split  to  maintain  balance  across  sentiment  classes,  avoiding  class 

 imbalance.  An  additional  set  of  2,514  tweets  is  provided  in  a  separate  file  but  was  not  used 

 during  the  baseline  experiments.  This  dataset  is  ideal  for  training  the  sentiment  analysis 

 model due to its size, diversity, and well-structured labeling. 

 2. Text Preprocessing 

 Due  to  the  nature  of  raw  text  data,  especially  in  regional  languages  like  Marathi, 

 preprocessing  is  a  critical  step.  The  following  NLP  techniques  are  employed  to  clean  and 

 prepare the text for the classification model: 

 ●  Tokenization:  The  process  of  breaking  down  the  input  text  into  individual  words  or 

 tokens  is  crucial  for  analyzing  text.  For  this,  the  NLTK  library  is  used  to  tokenize  Marathi 

 sentences into words. 

 ●  Stop-word  Removal:  Stop-words  (common  words  that  do  not  contribute  significantly  to 

 the  meaning  of  the  text,  such  as  “आहे”,  “होतो”  in  Marathi)  are  removed  to  reduce  noise 

 and improve the focus on sentiment-bearing words. 

 ●  Normalization:  The  text  is  cleaned  by  removing  special  characters,  punctuation,  and 

 numbers,  and  by  standardizing  words  that  have  various  forms  due  to  Marathi’s  rich 

 morphology. 

 These  preprocessing  steps  ensure  that  the  text  is  in  a  clean  and  standardized  format,  suitable 

 for feature extraction and model training. 
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 3. Feature Extraction 

 Once  the  text  has  been  preprocessed,  it  is  transformed  into  a  numerical  format  suitable  for 

 machine learning. This is done using the CountVectorizer technique from Scikit-learn: 

 CountVectorizer:  This  technique  converts  the  cleaned  text  into  a  bag-of-words 

 representation,  where  each  unique  word  in  the  corpus  is  treated  as  a  feature.  The  vectorizer 

 counts  the  occurrences  of  each  word  in  the  text  and  transforms  it  into  a  numerical  matrix  that 

 can  be  used  for  classification.  This  method  captures  the  frequency  of  words  across 

 documents, which is crucial for the model to understand word importance and patterns. 

 4. Multinomial Naive Bayes Algorithm 

 For  sentiment  classification,  Multinomial  Naive  Bayes  (MNB)  is  chosen  as  the  machine 

 learning  model.  This  algorithm  is  well-suited  for  text  classification  tasks  where  the  features 

 are word counts or frequencies. 

 Why Multinomial Naive Bayes? 

 Multinomial  Naive  Bayes  is  particularly  effective  in  dealing  with  text  data  because  it  models 

 the  probability  of  a  word  belonging  to  a  particular  class  (sentiment)  based  on  its  frequency  in 

 the  text.  It  assumes  that  each  word  contributes  independently  to  the  sentiment  of  the  text, 

 making  it  computationally  efficient  and  suitable  for  large  datasets.  The  algorithm  works  by 

 estimating  the  conditional  probability  of  a  class  given  the  features  (words),  and  it  is  known 

 for  its  strong  performance  in  document  classification  tasks.  Additionally,  it  scales  well  with 

 larger datasets and provides reliable results. 

 5. Model Training and Evaluation 

 The  Multinomial  Naive  Bayes  model  is  trained  on  the  preprocessed  and  vectorized  Marathi 

 text  from  the  training  dataset.  The  model  learns  to  associate  word  frequency  patterns  with 

 sentiment categories (positive, neutral, and negative). 

 The  model’s  performance  is  evaluated  using  the  validation  and  test  datasets.  Classification 

 reports  are  generated  to  measure  key  performance  metrics,  such  as  accuracy,  precision, 

 recall,  and  F1-score,  for  each  sentiment  class.  Additionally,  confusion  matrices  are  plotted  to 

 visualize the model’s performance in correctly classifying the sentiment categories. 
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 6. Sentiment Prediction 

 Once  trained,  the  system  allows  users  to  input  Marathi  text  and  receive  real-time  sentiment 

 predictions.  The  user’s  input  is  preprocessed,  vectorized,  and  classified  using  the  trained 

 Multinomial  Naive  Bayes  model.  This  functionality  demonstrates  the  practical  applicability 

 of the system in predicting sentiment from unseen Marathi text data. 

 1.5 Scope of The Project 

 The  scope  of  this  project  centers  on  the  development  and  implementation  of  a  sentiment 

 analysis  system  for  Marathi  text  using  traditional  machine  learning  techniques,  specifically 

 logistic  regression.  The  project  is  designed  to  provide  a  practical  and  scalable  solution  for 

 classifying  sentiment  as  positive,  neutral,  or  negative.  The  main  aspects  covered  within  the 

 scope include: 

 1.  Marathi Text Processing: 

 This  project  focuses  on  handling  text  data  in  the  Marathi  language,  which  includes 

 adapting  standard  NLP  preprocessing  techniques  like  tokenization,  stop-word  removal, 

 and normalization for Marathi-specific text characteristics. 

 2.  Sentiment Classification: 

 The  sentiment  analysis  is  restricted  to  classifying  text  into  three  categories—positive, 

 neutral,  and  negative.  The  Multinomial  Naive  Bayes  model  is  trained  to  work  on  Marathi 

 text and is evaluated based on its ability to perform this multiclass classification. 

 3.  Dataset and Domain: 

 The  project  uses  a  labeled  dataset  of  Marathi  text,  collected  from  publicly  available 

 sources  such  as  social  media,  reviews,  or  blogs.  The  dataset  is  balanced  to  include 

 examples  of  positive,  neutral,  and  negative  sentiment.  However,  the  dataset  is  limited  to 

 the domain of general opinions and may not cover specialized fields. 
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 4.  Machine Learning Model: 

 While  the  project  focuses  on  using  Multinomial  Naive  Bayes,  the  framework  developed 

 in  this  study  can  be  expanded  to  accommodate  other  machine  learning  or  deep  learning 

 models  in  the  future.  The  primary  scope,  however,  is  to  demonstrate  the  effectiveness  of 

 Multinomial  Naive  Bayes  when  coupled  with  proper  preprocessing  in  a  low-resource 

 language environment. 

 5.  Evaluation and Performance Metrics: 

 The  project  aims  to  evaluate  the  performance  of  theMultinomial  Naive  Bayes  model 

 using  common  evaluation  metrics  such  as  accuracy,  precision,  recall,  and  F1-score.  The 

 performance  is  tested  against  the  dataset  prepared,  but  its  scope  does  not  include 

 real-time deployment or handling of unseen, highly specialized forms of Marathi. 

 6.  Limitations: 

 The  scope  of  this  project  is  limited  to  the  Marathi  language,  and  the  methods  developed 

 may  not  generalize  directly  to  other  low-resource  languages  without  modifications. 

 Additionally,  while  this  project  focuses  on  Multinomial  Naive  Bayes,  it  does  not  explore 

 more  advanced  deep  learning  models  such  as  neural  networks  or  transformers,  which 

 could potentially yield higher accuracy in sentiment analysis tasks. 

 By  focusing  on  these  core  areas,  the  project  lays  the  groundwork  for  sentiment  analysis  in 

 Marathi  and  provides  a  model  that  can  be  extended  or  improved  upon  in  future  studies.  The 

 project  does  not  extend  to  developing  complex  production-level  systems  or  addressing  highly 

 domain-specific  sentiments,  keeping  its  scope  limited  to  general  sentiment  classification 

 tasks in Marathi. 
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 Chapter 2 

 Review of Literature 

 Paper  [1]  explored  the  effectiveness  of  the  Multinomial  Naive  Bayes  (MNB)  algorithm  in 

 sentiment  analysis.  Their  work  focused  on  the  automatic  classification  of  text,  specifically  movie 

 reviews,  into  positive  and  negative  sentiments  using  machine  learning  techniques.  The  authors 

 highlight  the  importance  of  efficient  document  sorting  due  to  the  overwhelming  growth  of  online 

 textual  data.  The  MNB  model  was  applied  with  a  "bag  of  words"  approach,  which  takes  word 

 frequency  into  account  rather  than  simple  word  occurrence,  thus  improving  classification 

 accuracy  compared  to  simpler  Naive  Bayes  models  like  the  Bernoulli  Naive  Bayes  (BNB).  To 

 enhance  performance,  they  incorporated  Term  Frequency-Inverse  Document  Frequency 

 (TF-IDF)  for  weighting  words  based  on  their  importance,  resulting  in  an  improved  model 

 performance. 

 The  experiments  were  conducted  on  a  dataset  of  movie  reviews,  and  the  results  showed  an  initial 

 accuracy  of  91%.  While  the  model  proved  to  be  computationally  efficient  and  effective  on  large 

 datasets,  one  of  the  key  limitations  identified  was  overfitting  on  smaller  datasets.  Furthermore, 

 the  authors  pointed  out  that  while  MNB  provides  a  robust  method  for  sentiment  analysis,  future 

 work  could  involve  integrating  advanced  techniques  like  deep  learning  to  further  enhance 

 accuracy,  particularly  in  more  complex  text  scenarios.  Despite  these  limitations,  the  research 

 demonstrates the strong potential of MNB for real-time sentiment classification tasks. 
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 Chapter 3 

 System Analysis 

 3.1 Functional Requirements 
 The  functional  requirements  of  the  system  are  the  key  operations  and  features  that  the 

 sentiment  analysis  system  for  Marathi  text  is  expected  to  perform.  These  requirements  are 

 essential  for  the  successful  implementation  and  functionality  of  the  sentiment  classification 

 model. The following are the major functional requirements of the system: 

 1.  Input Text Handling: 

 ●  The system must accept raw Marathi text as input from users. 

 ●  It  should  be  able  to  handle  a  variety  of  text  formats,  such  as  plain  text  input, 

 social media posts, or online reviews, provided in Marathi. 

 ●  The  system  must  support  the  processing  of  multiple  sentences  or  paragraphs  at  a 

 time. 

 2.  Text Preprocessing: 

 ●  Tokenization:  The  system  should  break  the  input  Marathi  text  into  tokens  or 

 individual  words,  ensuring  that  punctuation  and  special  characters  are 

 appropriately handled. 

 ●  Stop-word Removal: It should remove Marathi stop-words (e.g., “आहे”, “होतो”). 

 ●  Normalization:  The  system  must  normalize  the  text  by  converting  inflected  or 

 non-standardized words into a standard form. 

 ●  Special  Character  and  Noise  Removal:  The  system  should  remove  unnecessary 

 symbols,  numbers,  and  irrelevant  characters  that  do  not  contribute  to  sentiment 

 classification. 

 3.  Feature Extraction: 
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 ●  The  system  should  convert  the  preprocessed  text  into  numerical  features  using 

 techniques  like  Term  Frequency-Inverse  Document  Frequency  (TF-IDF)  or 

 bag-of-words representation, making the text data usable for machine learning. 

 ●  It  should  accurately  weigh  words  according  to  their  frequency  and  importance 

 within the context of sentiment. 

 4.  Sentiment Classification: 

 ●  The  system  must  classify  the  sentiment  of  the  input  Marathi  text  as  either 

 positive, neutral, or negative. 

 ●  The  logistic  regression  model  should  be  trained  to  output  the  probability  of  each 

 sentiment class and predict the most likely sentiment based on the input features. 

 ●  The  system  should  provide  the  sentiment  label  (positive,  neutral,  or  negative)  as 

 output for each text sample processed. 

 5.  Model Training and Learning: 

 ●  The  system  must  support  the  training  of  the  logistic  regression  model  using  a 

 labeled dataset of Marathi text. 

 ●  The  system  must  also  support  hyperparameter  tuning,  allowing  for  optimization 

 of  the  model’s  performance  based  on  evaluation  metrics  such  as  accuracy, 

 precision, recall, and F1-score. 

 6.  Evaluation and Feedback: 

 ●  The  system  must  provide  performance  metrics  such  as  accuracy,  precision,  recall, 

 and F1-score for the sentiment classification model. 

 ●  It  should  display  the  evaluation  results  after  model  training,  enabling  users  to 

 assess how well the model is performing. 

 ●  The  system  should  provide  feedback  on  the  classification  of  test  samples  to  verify 

 its accuracy and reliability. 
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 3.2 Non Functional Requirements: 

 3.2.1 Performance Requirements 

 1.  Accuracy of Sentiment Classification: 

 The  system  must  achieve  high  accuracy  in  classifying  Marathi  text  as  positive,  neutral,  or 

 negative.  The  performance  should  be  evaluated  using  metrics  such  as  precision,  recall, 

 and  F1-score.  The  goal  is  to  maintain  at  least  80%  accuracy  on  a  balanced  test  set  to 

 ensure the system is reliable in real-world applications. 

 2.  Processing Speed: 

 The  system  must  be  able  to  process  and  classify  text  efficiently.  Given  that  Marathi  text 

 datasets  may  vary  in  size,  the  sentiment  analysis  model  should  perform  with  a  reasonable 

 processing time for both training and prediction tasks. The system should: 

 ●  Process  input  text  and  provide  sentiment  classification  within  a  few  seconds  for 

 individual sentences or small text samples. 

 ●  Handle  larger  datasets  (e.g.,  batch  classification)  within  a  reasonable  time  frame, 

 ensuring that the classification task completes without significant delays. 

 3.  Scalability: 

 The  system  should  be  scalable,  allowing  it  to  handle  increasing  amounts  of  Marathi  text 

 data  without  significant  degradation  in  performance.  The  model  must  be  capable  of 

 processing larger datasets or retraining with additional data as needed. 

 4.  Memory and Resource Usage: 

 The  system  should  be  optimized  for  memory  and  resource  consumption,  particularly  in 

 environments  with  limited  computational  power.  It  should  efficiently  manage  the 

 system’s  memory,  especially  during  preprocessing  and  model  training,  to  prevent 

 excessive  resource  usage.  The  feature  extraction  and  training  process  should  be 

 lightweight enough to run on standard machines. 
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 3.2.2 Software Quality Attributes 

 1.  Maintainability: 

 The  system  must  be  designed  for  easy  maintainability,  allowing  for  updates,  such  as 

 improvements  to  the  preprocessing  pipeline  or  model  enhancements.  The  sentiment 

 analysis  code  should  be  modular,  ensuring  that  each  component  (e.g.,  preprocessing, 

 feature extraction, classification) can be modified independently. 

 2.  Extensibility: 

 While  the  current  project  focuses  on  using  Multinomial  Naive  Bayes,  the  system  should 

 be  designed  with  extensibility  in  mind,  allowing  for  the  integration  of  other  machine 

 learning  models  (e.g.,  decision  trees,  support  vector  machines,  or  deep  learning  models) 

 in the future. 

 3.  Reusability: 

 The  preprocessing  and  feature  extraction  components  should  be  reusable  across  other 

 NLP  tasks  involving  Marathi  text.  The  system  should  be  designed  in  such  a  way  that 

 these  components  can  be  easily  adapted  for  other  machine  learning  applications,  such  as 

 text classification or topic modeling, involving Marathi language data. 

 4.  Reliability: 

 The  system  must  reliably  produce  sentiment  classifications  across  various  text  inputs.  It 

 should  consistently  handle  different  forms  of  Marathi  text,  including  informal  language, 

 spelling  variations,  and  different  sentence  structures,  without  breaking  or  producing 

 erroneous results. 

 5.  Portability: 

 The  system  should  be  portable  and  able  to  run  on  different  platforms  or  environments 

 without  extensive  reconfiguration.  This  includes  compatibility  with  standard  data  science 

 environments  (e.g.,  Python,  Jupyter  notebooks,  and  libraries  such  as  scikit-learn  and 

 NLTK) so that the system can be used in various academic and industrial settings. 
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 6.  Accuracy and Robustness: 

 The  system  should  not  only  perform  with  high  accuracy  but  also  be  robust  to  variations 

 in  Marathi  text.  It  should  handle  errors  or  noise  in  the  text  (such  as  typos  or  slang) 

 without  a  significant  drop  in  performance.  This  robustness  is  critical  for  dealing  with 

 real-world data, which may be noisy or unstructured. 

 7.  Documentation and Clarity: 

 Proper  documentation  must  be  provided  to  ensure  that  the  system’s  functionality  is  clear 

 and  understandable  to  future  users  or  developers.  This  includes  documenting  the  steps 

 involved in text preprocessing, model training, and evaluation,. 

 3.3 Specific Requirements: 

 Hardware : 
 Minimum Requirements 

 CPU: Dual-core processor (Intel i5 or AMD Ryzen 5) 

 RAM: 8 GB 

 Storage: 256 GB SSD 

 Network: Stable internet connection (for downloading datasets and libraries) 

 Recommended Requirements 

 CPU: Quad-core processor (Intel i7 or AMD Ryzen 7) 

 RAM: 16 GB 

 Storage: 512 GB SSD 

 Network: Stable internet connection (for collaborative work and data fetching) 

 Software : 
 Operating System 

 Windows: Windows 10 or later 

 Programming Language 

 Python: Version 3.7 or later 

 Libraries and Packages 

 Data Handling 

 pandas: For data manipulation and analysis 

 numpy: For numerical operations 
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 Natural Language Processing (NLP) 

 nltk: For tokenization and natural language processing tasks 

 re: Built-in module for regular expressions 

 Machine Learning 

 scikit-learn: For implementing the Multinomial Naive Bayes algorithm 

 Data Visualization 

 matplotlib: For plotting graphs and visualizing results 

 seaborn: For enhanced data visualization 

 Other Utilities 

 joblib: For saving and loading models 

 IDE or Text Editor 

 Google Colab Notebook: Recommended for interactive data analysis and visualization 

 PyCharm: A powerful IDE for Python development 

 3.4 Use-Case Diagrams and description 

 Figure 1: Use Case Diagram for sentiment analysis 

 There  are  two  actors:  the  User  and  the  System.  The  User  interacts  with  the  system  by 

 providing  input  through  Input  Text  and  Click  on  Check  Sentiment.  The  system  then  begins 

 with  Preprocess  Text,  which  involves  steps  such  as  Normalize  Text,  Tokenize  Text,  and 

 Remove  Stopwords  to  prepare  the  input  for  analysis.Then  it  executes  the  Perform  Sentiment 

 Analysis.  The  system  completes  the  process  with  the  Give  Results  use  case,  displaying  the 

 sentiment outcome along with a Confusion Matrix to evaluate the accuracy of the analysis. 

 20 



 Chapter  4 

 Analysis Modeling 

 4.1 Class Diagram 

 Figure 2: Class Diagram for sentiment analysis 

 In  this  class  diagram,  there  are  three  main  classes:  User,  Sentiment  Analyser,  and  Dataset. 

 The  User  class  has  two  attributes:  text  and  sentiment,  both  as  strings,  and  it  uses  the  function 

 submit_text()  to  provide  input.  The  Sentiment  Analyser  class  also  has  the  attributes  text  and 

 sentiment  as  strings,  along  with  a  tokenizer  implemented  using  CountVectorizer,  and  a  model 

 using  MultinomialNB.  It  includes  the  functions  preprocess_text()  to  clean  and  prepare  the 

 input  and  marathi_sent_analysis()  to  perform  sentiment  analysis.  The  Dataset  class  contains 

 two  attributes:  tweet  (a  string)  and  label  (an  integer  representing  sentiment),  with  functions 

 preprocess(),  tokenize(),  train(),  test(),  and  validate()  for  handling  and  preparing  data  for 

 sentiment analysis. 
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 4.2 Functional Modeling 

 Data Flow Diagram 

 Figure 3: Data Flow Diagram for sentiment analysis 

 In  this  data  flow  diagram,  there  are  two  main  parts:  Training  and  Prediction.  In  the  Training 

 phase,  the  process  starts  with  Training  Data,  which  undergoes  Feature  Extraction  to  convert 

 the  raw  text  into  numerical  features.  These  features  are  labeled  with  Pos/Neg/Neutral 

 sentiment  labels,  and  the  Training  process  uses  these  labeled  features  to  train  the  sentiment 

 analysis  model.  In  the  Prediction  phase,  the  system  receives  an  Input  Text,  performs  Feature 

 Extraction  to  generate  features,  and  then  passes  them  through  the  Multinomial  Naive  Bayes 

 Classifier.  The  classifier  outputs  the  predicted  sentiment  as  Pos/Neg/Neutral  text  based  on  the 

 analysis. 
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 Chapter  5 

 Design 

 5.1 Architectural Design 

 Figure 4: Architectural Diagram for sentiment analysis 

 In  this  architectural  diagram,  the  process  begins  with  Data  Collection,  where  the  raw  data  is 

 gathered.  This  data  moves  to  the  Preprocessing  stage,  where  it  undergoes  several  steps: 

 removing  punctuation,  numbers,  and  symbols,  normalization,  tokenization,  and  stopword 

 removal  to  clean  the  text.  After  preprocessing,  the  data  is  passed  to  the  Vectorization  step, 

 where  the  CountVectorizer  is  used  to  convert  the  text  into  numerical  feature  vectors.  Then, 

 the  system  proceeds  to  Applying  ML  Classification  Algorithm,  where  MultinomialNB  is 

 applied  to  classify  the  text  into  categories  such  as  positive,  negative,  or  neutral.  Finally,  the 

 model's performance is assessed during the Evaluation phase. 
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 5.2 User Interface Design 

 The  user  interface  is  implemented  using  Streamlit,  a  Python  framework  that  allows  for  the 

 rapid  development  of  interactive  web  applications.  The  primary  goal  of  the  user  interface  is 

 to  provide  a  simple,  intuitive  way  for  users  to  input  Marathi  text  and  obtain  sentiment 

 predictions  (positive,  neutral,  or  negative).  The  design  of  the  interface  ensures  ease  of  use 

 while  maintaining  responsiveness  and  clarity.  The  following  components  make  up  the 

 design: 

 1.  Title and Introduction 

 The interface starts with a clear title and a brief description of the system’s purpose: 

 Title: "Marathi Sentiment Analysis" 

 Description: The system prompts the user to enter a Marathi sentence to determine its 

 sentiment (positive, neutral, or negative). 

 This ensures that users immediately understand the function of the application. 

 st.title('Marathi Sentiment Analysis') 
 st.write('Enter a Marathi sentence and get its sentiment label.') 

 2.  User Input Field 

 The  main  interaction  point  for  the  user  is  the  text  input  field.  This  field  allows  users  to  enter  a 

 Marathi  sentence.  The  input  field  is  designed  to  handle  simple  sentences,  ensuring  that  users 

 can quickly submit text for analysis without confusion. 

 user_input = st.text_input('Enter Sentence:', '') 

 3.  Submit Button 

 Next  to  the  input  field,  a  Submit  button  is  provided  to  allow  users  to  submit  their  sentence  for 

 sentiment  analysis.  Upon  clicking  the  button,  the  system  processes  the  text  and  predicts  its 

 sentiment using the trained machine learning model. 
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 Action:  When  the  user  clicks  the  "Submit"  button,  the  system  triggers  the  backend  function 

 that  processes  the  text,  vectorizes  it,  and  classifies  it  using  the  Multinomial  Naive  Bayes 

 model. 

 Validation:  If  no  input  is  provided,  the  system  prompts  the  user  to  enter  a  valid  sentence 

 before submitting. 

 if st.button("Submit"): 
 if user_input: 

 sentiment = predict_sentiment(user_input) 
 # Output sentiment prediction 

 else: 
 st.write("Please enter a sentence.") 

 4.  Displaying Sentiment Prediction 

 Once  the  user  submits  a  sentence,  the  system  outputs  the  predicted  sentiment.  The  result  is 

 displayed  on  the  same  page  under  the  input  field.  The  sentiment  is  classified  into  one  of  the 

 following categories: 

 ●  Positive 

 ●  Negative 

 ●  Neutral 

 This  provides  immediate  feedback  to  the  user.  The  interface  ensures  that  the  result  is 

 displayed  in  a  user-friendly  format,  making  it  clear  which  sentiment  has  been  predicted  for 

 the input text. 

 if sentiment == 1: 
 sentiment_label = "Positive" 

 elif sentiment == -1: 
 sentiment_label = "Negative" 

 else: 
 sentiment_label = "Neutral" 

 st.write(f'Predicted Sentiment: {sentiment_label}') 

 5.  Error Handling and Feedback 

 The  interface  includes  basic  error  handling  to  ensure  that  users  enter  valid  text.  If  the  input 

 field  is  left  blank  and  the  user  clicks  "Submit,"  a  message  is  displayed,  prompting  the  user  to 
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 input  a  valid  sentence.  This  prevents  any  confusion  and  enhances  the  user  experience  by 

 ensuring proper input validation. 

 else: 
 st.write("Please enter a sentence.") 

 User Experience (UX) Considerations 

 ●  Simplicity:  The  interface  is  minimalist,  ensuring  users  can  interact  with  it  easily  without 

 any  distractions.  Only  essential  elements  such  as  input  fields,  buttons,  and  result  displays 

 are included. 

 ●  Real-time  Feedback:  The  sentiment  prediction  is  displayed  instantly  after  the  user 

 submits the sentence, ensuring a smooth and interactive experience. 

 ●  Responsive  Design:  Since  the  interface  is  built  using  Streamlit,  it  is  responsive  and  works 

 across various devices, including desktops and mobile browsers. 

 Figure 5: Neutral Sentiment Prediction 

 The  UI  allows  users  to  input  Marathi  text,  such  as  "स�ट  �ा��स  इ���ूट  ऑफ  टे�ॉलॉजी  हे 

 एक  अिभयांि�की  महािव�ालय  आहे",  (St.  Francis  Institute  of  Technology  is  an  Engineering 

 College) and upon clicking "Submit" button, it displays the predicted sentiment as "Neutral". 
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 Figure 6: Positive Sentiment Prediction 

 The  UI  allows  users  to  input  Marathi  text,  such  as  "आज  नवीन  बाईक  िमळा�ानंतर  सिमत  खूप  खुश 

 झाला  होता,"  (After  getting  his  new  bike  today  Samit  was  very  happy)  and  upon  clicking  the 

 "Submit" button, it displays the predicted sentiment as "Positive." 

 Figure 7: Negative Sentiment Prediction 

 The  UI  allows  users  to  input  Marathi  text,  such  as  "सिमतचा  हेवा  क�न  आपण  चांगलं  केलं,  असा 

 जेडनचा  ठाम  िव�ास  होता,"  (Jaden  was  of  firm  belief  that  he  did  good  by  being  envious  of  Samit) 

 and upon clicking the "Submit" button, it displays the predicted sentiment as "Negative." 
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 Chapter 6 

 Implementation 

 6.1 Algorithms 

 Multinomial Naive Bayes Algorithm 

 Multinomial  Naive  Bayes  (MNB)  is  a  supervised  learning  algorithm  based  on  the  application 

 of  Bayes'  Theorem.  It  is  particularly  well-suited  for  classification  problems  involving 

 discrete  features,  especially  in  text  classification  tasks  where  word  frequencies  are  used  as 

 features.  The  Multinomial  Naive  Bayes  algorithm  is  an  extension  of  the  basic  Naive  Bayes 

 classifier,  specifically  designed  to  handle  multiclass  classification  where  the  features 

 represent counts or frequency of occurrences (such as words in a document). 

 1. Bayes' Theorem 

 At  the  core  of  the  Naive  Bayes  algorithm  is  Bayes'  Theorem,  which  calculates  the  probability 

 of a class given a feature vector: 

 Where: 

 ●  is the posterior probability of class  given the  feature vector  X 

 ●  is the likelihood of the feature vector  X  given  class 

 ●  is the prior probability of class 

 ●  is the evidence or the total probability of the  feature vector. 

 Naive  Bayes  is  considered  "naive"  because  it  assumes  that  all  features  are  conditionally 

 independent  of  one  another  given  the  class.  Despite  this  strong  assumption  of  independence, 
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 Naive  Bayes  has  been  shown  to  work  very  well  in  practice,  especially  in  text  classification 

 problems. 

 2. Multinomial Naive Bayes for Text Classification 

 In  the  context  of  text  classification,  the  Multinomial  Naive  Bayes  algorithm  models  the  data 

 as  a  multinomial  distribution,  where  the  features  represent  word  counts  or  term  frequencies 

 in a document. 

 Features  (X):  In  text  classification,  the  features  represent  the 

 frequency  of  each  word  (or  token)  in  the  document.  The  word  counts  are  obtained  from  the 

 preprocessed  text,  which  may  be  converted  into  a  term  frequency  vector  using  methods  like 

 CountVectorizer or TF-IDF (Term Frequency-Inverse Document Frequency). 

 Classes  (C):  The  classes  represent  the  sentiment  categories  that  the  model  is  trying  to  predict 

 (for example, positive, neutral, and negative sentiment). 

 3. The Multinomial Distribution 

 In  the  Multinomial  Naive  Bayes  algorithm,  the  probability  of  a  document  (feature  vector) 

 given a class is modeled as a multinomial distribution: 

 Where: 

 ●  is the probability of the word  occurring in class 

 ●  is the count of word  𝑖  in the document. 

 ●  The  likelihood  of  the  entire  document  is  the  product  of  the  probabilities  of  all  words  in 

 that document, given the class 

   

 . 

 The  model  learns  the  conditional  probabilities  by  calculating  the  relative 
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 frequency  of  each  word  in  the  training  set  for  each  class.  Smoothing  techniques  like  Laplace 

 Smoothing  (also  called  add-one  smoothing)  are  often  used  to  handle  zero  probabilities  when 

 a word does not appear in the training data for a particular class. 

 4. Classification Process 

 Once  the  model  is  trained,  it  predicts  the  class  of  a  new  document  by  applying  Bayes’ 

 theorem  to  compute  the  posterior  probability  for  each  class  ,  and  assigns  the  document 

 to the class with the highest posterior probability: 

 Where: 

 ●  is  the  prior  probability  of  class  (estimated  from  the  training  data  as  the 

 proportion of documents in each class). 

 ●  is  the  likelihood  of  the  document  belonging  to  class  ,  calculated  from 

 the product of word probabilities conditioned on the class. 

 5. Application in This Project 

 In  this  project,  the  Multinomial  Naive  Bayes  algorithm  is  applied  to  classify  Marathi  text 

 (tweets)  into  one  of  three  sentiment  classes:  positive,  neutral,  or  negative.  The  algorithm  is 

 trained  on  the  L3CubeMahaSent  dataset,  which  contains  manually  labeled  Marathi  tweets. 

 The  preprocessed  text  is  transformed  into  word  frequency  vectors  using  CountVectorizer,  and 

 the  model  predicts  the  sentiment  by  computing  the  likelihood  of  the  text  belonging  to  each 

 sentiment class. 

 Given  the  large  size  of  the  dataset  and  the  nature  of  text  data,  Multinomial  Naive  Bayes  is  an 

 ideal  choice  due  to  its  efficiency  and  suitability  for  handling  sparse  feature  matrices,  which 

 are common in text classification tasks. 
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 6.2 Working of the project 

 The  sentiment  analysis  system  for  Marathi  text  is  implemented  using  a  combination  of  data 

 preprocessing  techniques,  text  vectorization,  and  the  Multinomial  Naive  Bayes  machine 

 learning  model.  The  following  steps  describe  how  the  project  is  structured  and  the  workflow 

 for training and evaluating the model. 

 Step 1: Loading the Dataset 

 The  first  step  involves  loading  the  datasets  for  training,  validation,  and  testing.  The  dataset 

 used  contains  Marathi  tweets  that  are  labeled  with  sentiment  values.  The  training  dataset  is 

 used  to  train  the  model,  the  validation  dataset  is  used  for  model  evaluation  during  training, 

 and the test dataset is reserved for final performance testing. 

 import pandas as pd 

 # Load datasets 
 train_df = pd.read_csv('train.csv') 
 val_df = pd.read_csv('valid.csv') 
 test_df = pd.read_csv('test.csv') 

 # Display the first few rows of each dataset 
 print(train_df.head()) 
 print(val_df.head()) 
 print(test_df.head()) 

 Step 2: Analyzing the Dataset 

 Before  proceeding  with  model  training,  it  is  important  to  analyze  the  datasets  for  any  missing 

 values  and  to  understand  the  data  types  in  each  dataset.  This  step  ensures  that  the  data  is 

 clean and ready for processing. 

 # Check for missing values and data types in each dataset 
 print(train_df.info()) 
 print(val_df.info()) 
 print(test_df.info()) 
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 Step 3: Loading the Marathi Stopwords List 

 A  list  of  custom  Marathi  stopwords  is  loaded  from  an  external  text  file.  These  stopwords  are 

 words  that  do  not  carry  significant  meaning  for  sentiment  analysis  (such  as  common  words 

 like "आहे", "होतो") and need to be removed during text preprocessing to reduce noise. 

 # Load custom Marathi stopwords from the text file 
 def load_stopwords(file_path): 

 with open(file_path, 'r', encoding='utf-8') as f: 
 stopwords = f.read().splitlines() 

 return set(stopwords) 

 marathi_stopwords = load_stopwords('marathi_stopwords.txt') 

 Step 4: Text Preprocessing 

 To  prepare  the  raw  text  for  machine  learning,  several  preprocessing  steps  are  applied.  These 

 include: 

 ●  Punctuation Removal: Removing punctuation from the text. 

 ●  Number Removal: Removing numbers from the text. 

 ●  Tokenization: Splitting the text into individual words. 

 ●  Stopword Removal: Removing Marathi stopwords to focus on sentiment-related words. 

 import re 
 import nltk 

 # Download necessary NLTK resources 
 nltk.download('punkt') 

 # Define a function for preprocessing text 
 def preprocess_text(text): 

 text = re.sub(r'[^\w\s]', '', text)  # Remove punctuation 
 text = re.sub(r'\d+', '', text)  # Remove numbers 
 tokens = nltk.word_tokenize(text)  # Tokenization 
 tokens = [word for word in tokens if word not in marathi_stopwords]  # 

 Remove stopwords 
 return ' '.join(tokens) 

 # Apply preprocessing to each dataset 
 train_df['cleaned_text'] = train_df['tweet'].apply(preprocess_text) 
 val_df['cleaned_text'] = val_df['tweet'].apply(preprocess_text) 
 test_df['cleaned_text'] = test_df['tweet'].apply(preprocess_text) 
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 Step 5: Text Vectorization 

 After  preprocessing,  the  text  data  is  transformed  into  numerical  form  using  CountVectorizer. 

 This  step  converts  the  cleaned  text  into  a  bag-of-words  representation,  where  each  word  in 

 the  dataset  is  treated  as  a  feature.  This  vectorized  format  is  essential  for  machine  learning 

 models to process text data. 

 from sklearn.feature_extraction.text import CountVectorizer 

 # Initialize CountVectorizer 
 vectorizer = CountVectorizer() 

 # Vectorize training data 
 X_train_vectorized = vectorizer.fit_transform(train_df['cleaned_text']) 
 y_train = train_df['label'] 

 # Vectorize validation and testing data 
 X_val_vectorized = vectorizer.transform(val_df['cleaned_text']) 
 y_val = val_df['label'] 
 X_test_vectorized = vectorizer.transform(test_df['cleaned_text']) 
 y_test = test_df['label'] 

 Step 6: Model Training 

 The  Multinomial  Naive  Bayes  model  is  chosen  as  the  machine  learning  algorithm  for  this 

 project.  The  model  is  trained  on  the  vectorized  training  data  (word  frequency  vectors)  and 

 corresponding sentiment labels. 

 from sklearn.naive_bayes import MultinomialNB 

 # Initialize and train the model 
 model = MultinomialNB() 
 model.fit(X_train_vectorized, y_train) 

 Step 7: Prediction and Evaluation 

 Once  the  model  is  trained,  it  is  evaluated  using  the  validation  and  test  datasets.  Predictions 

 are  made,  and  the  model's  performance  is  measured  using  a  classification  report  and 

 confusion  matrix.  The  classification  report  provides  detailed  metrics  such  as  precision,  recall, 

 F1-score, and accuracy for each sentiment class (positive, neutral, negative). 
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 from sklearn.metrics import classification_report, confusion_matrix 
 import seaborn as sns 
 import matplotlib.pyplot as plt 

 # Predict on validation set 
 y_val_pred = model.predict(X_val_vectorized) 

 # Classification report for validation set 
 print("Validation Classification Report:") 
 print(classification_report(y_val, y_val_pred)) 

 # Confusion matrix for validation set 
 cm_val = confusion_matrix(y_val, y_val_pred) 
 sns.heatmap(cm_val, annot=True, fmt='d', cmap='Blues', 
 xticklabels=np.unique(y_train), yticklabels=np.unique(y_train)) 
 plt.title('Confusion Matrix - Validation Set') 
 plt.xlabel('Predicted Label') 
 plt.ylabel('True Label') 
 plt.show() 

 # Predict on test set 
 y_test_pred = model.predict(X_test_vectorized) 

 # Classification report for test set 
 print("Test Classification Report:") 
 print(classification_report(y_test, y_test_pred)) 

 # Confusion matrix for test set 
 cm_test = confusion_matrix(y_test, y_test_pred) 
 sns.heatmap(cm_test, annot=True, fmt='d', cmap='Blues', 
 xticklabels=np.unique(y_train), yticklabels=np.unique(y_train)) 
 plt.title('Confusion Matrix - Test Set') 
 plt.xlabel('Predicted Label') 
 plt.ylabel('True Label') 
 plt.show() 

 Step 8: Sentiment Prediction 

 Finally,  a  sentiment  prediction  function  is  created  to  classify  user-input  text.  The  function 

 preprocesses  the  text,  vectorizes  it,  and  predicts  its  sentiment  using  the  trained  model.  This 

 allows the model to be used for real-time sentiment classification. 

 def predict_sentiment(text): 
 cleaned_text = preprocess_text(text) 
 vectorized_text = vectorizer.transform([cleaned_text]) 
 prediction = model.predict(vectorized_text) 
 return prediction[0] 
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 Chapter 7 

 Conclusion 

 This  project  successfully  demonstrates  the  application  of  sentiment  analysis  for  Marathi  text,  a 

 low-resource  language,  using  a  combination  of  Natural  Language  Processing  (NLP)  techniques 

 and  a  machine  learning  model.  By  utilizing  the  L3CubeMahaSent  dataset,  the  largest  publicly 

 available  dataset  for  Marathi  sentiment  analysis,  and  implementing  the  Multinomial  Naive  Bayes 

 algorithm,  the  system  effectively  classifies  Marathi  tweets  into  positive,  neutral,  and  negative 

 sentiment categories. 

 The  project's  success  lies  in  its  carefully  designed  preprocessing  pipeline,  which  includes 

 tokenization,  stop-word  removal,  and  normalization,  all  of  which  are  tailored  to  the  linguistic 

 intricacies  of  Marathi.  The  use  of  CountVectorizer  for  feature  extraction  further  enabled  the 

 model  to  capture  the  frequency  of  words  and  their  impact  on  sentiment  classification.  The 

 Multinomial  Naive  Bayes  algorithm,  chosen  for  its  efficiency  and  strong  performance  in  text 

 classification tasks, proved to be effective in handling the sparse nature of word frequency data. 

 Through  thorough  training  and  evaluation  using  the  training,  validation,  and  test  splits  of  the 

 L3CubeMahaSent  dataset,  the  system  demonstrated  reliable  sentiment  classification 

 performance.  The  use  of  well-established  evaluation  metrics,  such  as  accuracy,  precision,  recall, 

 and  F1-score,  ensured  a  comprehensive  understanding  of  the  model's  strengths  and  areas  for 

 improvement. 

 In  conclusion,  this  project  contributes  to  the  growing  field  of  Natural  Language  Processing  for 

 low-resource  languages  like  Marathi.  It  highlights  the  potential  of  traditional  machine  learning 

 algorithms  in  achieving  high  accuracy  and  scalability  for  sentiment  analysis.  Future  work  could 

 focus  on  exploring  more  advanced  models  such  as  transformers,  expanding  the  dataset,  or  further 

 refining  the  preprocessing  techniques  to  enhance  performance.  This  system  provides  a 

 foundational  approach  that  can  be  built  upon  for  more  sophisticated  sentiment  analysis  systems 

 and real-world applications in Marathi language processing. 
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