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Abstract

This project presents a sentiment analysis system for Marathi text, utilizing Natural Language
Processing (NLP) techniques to classify the sentiment as positive, neutral, or negative. The
primary focus of the work is on the preprocessing of Marathi text data, which includes
tokenization, stop-word removal, and normalization processes tailored to the Marathi language.
A Multinomial Naive Bayes model is employed as the predictive mechanism, trained on labeled
Marathi text datasets. The model is evaluated based on its ability to accurately classify sentiment
across a variety of text samples. Results demonstrate the effectiveness of machine learning
methods like Multinomial Naive Bayes in handling sentiment classification tasks in low-resource
languages such as Marathi. This study contributes to the growing field of NLP for regional
languages and provides a foundational approach for further research and development in

sentiment analysis systems.
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Chapter 1
Introduction

1.1 Description

Sentiment analysis, also known as opinion mining, is an essential task in Natural Language
Processing (NLP), aimed at determining the sentiment conveyed by a given piece of text.
This project focuses on performing sentiment analysis on Marathi text, a widely spoken
language in India but relatively underrepresented in the field of NLP research. The main
objective is to classify the sentiment of the text as positive, neutral, or negative using

machine learning techniques.

Due to the rich morphology and syntactic complexity of Marathi, sentiment analysis poses
unique challenges, especially in the preprocessing phase. Marathi text often contains
linguistic variations, informal expressions, and a lack of standardized writing, all of which
make it difficult to handle using conventional NLP methods. This project employs a
Multinomial Naive Bayes model to predict sentiment based on features extracted from
preprocessed text data. Preprocessing steps such as tokenization, stop-word removal, and
normalization are customized to accommodate the specific characteristics of the Marathi
language. The dataset for this project comprises labeled Marathi text samples, which are

essential for training and validating the logistic regression model.

The significance of this project lies in its contribution to the growing body of work on
sentiment analysis for low-resource languages. While sentiment analysis has been widely
explored for languages like English and Hindi, limited research has been conducted for
regional languages like Marathi. The implementation of the Multinomial Naive Bayes model
demonstrates how machine learning algorithms can be effective when applied to such
low-resource languages with appropriate preprocessing techniques. This study provides a
foundation for further exploration in NLP for Marathi, opening avenues for future research

and more sophisticated language models.



1.2 Problem Formulation

The rise of digital content in regional languages has created a growing demand for sentiment

analysis in low-resource languages like Marathi. However, most existing Natural Language

Processing (NLP) tools and models are primarily designed for widely spoken languages such

as English, leaving regional languages with limited resources and tools for sentiment

analysis. Marathi, despite being one of the most widely spoken languages in India, lacks

sufficient datasets, linguistic resources, and tailored models for effective sentiment analysis.

This project aims to address the challenge of performing sentiment analysis on Marathi text

by leveraging supervised machine learning techniques. The primary problem is to classify

the sentiment of a given Marathi text as either positive, neutral, or negative. To achieve this,

the project focuses on the following key challenges:

1.

Text Preprocessing for Marathi: Marathi text presents unique linguistic characteristics
such as complex morphology, informal variations, and the absence of a standardized form
of writing. Preprocessing steps such as tokenization, normalization, and stop-word

removal need to be carefully adapted to handle these intricacies.

Feature Extraction and Representation: Converting raw text into a structured format
suitable for machine learning involves selecting appropriate features, such as word
frequencies or TF-IDF scores, that can capture the sentiment-related patterns in Marathi

text.

Sentiment Classification: The task is to develop a model that can accurately predict
whether a piece of text conveys a positive, neutral, or negative sentiment. Multinomial
Naive Bayes is chosen as the classification algorithm due to its efficiency, scalability, and
strong performance in text classification tasks, particularly when dealing with word

frequency features in multiclass problems.

Model Evaluation and Optimization: It is necessary to assess the model's performance

using appropriate evaluation metrics such as accuracy, precision, recall, and F1-score.



Additionally, techniques like hyperparameter tuning may be required to optimize the

model's performance.

The goal of this project is to create a sentiment analysis system that effectively handles the
challenges of working with Marathi text, offering reliable sentiment classification for

low-resource languages.

1.3 Motivation

The explosion of user-generated content on social media, blogs, and forums in regional
languages has created an increasing demand for sentiment analysis in languages beyond
English and other globally dominant languages. Marathi, spoken by over 83 million people,
is one such regional language that has seen significant growth in online content. However,
despite its widespread use, Marathi remains a low-resource language in terms of Natural
Language Processing (NLP) tools and datasets, making it difficult to apply advanced

sentiment analysis techniques. This project is motivated by the need to bridge that gap.

The growing influence of sentiment analysis in various fields such as market research, public
opinion monitoring, and customer feedback analysis further highlights the importance of
extending these capabilities to regional languages. In multilingual societies like India,
analyzing sentiment in native languages such as Marathi can provide deeper insights into
public sentiment that are otherwise inaccessible through analysis in English or Hindi.
Developing NLP tools for Marathi can enhance communication and engagement across
sectors, including government, businesses, and social platforms, by providing a better

understanding of user opinions and emotions.

While deep learning methods have gained popularity in recent years, traditional algorithms,
when paired with language-specific preprocessing techniques, can still deliver reliable and
interpretable results, especially in low-resource settings. This project seeks to demonstrate
that by focusing on effective preprocessing tailored to Marathi text, a simple yet powerful

machine learning model can achieve satisfactory sentiment classification outcomes.



1.4 Proposed Solution

1. Dataset: L3CubeMahaSent

The dataset used for this project is L3CubeMahaSent, which is the largest publicly available
Marathi sentiment analysis dataset to date. This dataset consists of 18,378 Marathi tweets,
manually labeled into three sentiment categories: positive (1), neutral (0), and negative (-1).
The dataset is representative of real-world data as the tweets are provided in their original,
unprocessed form.

Dataset Statistics:

Training set: 12,114 tweets (4,038 per class)

Test set: 2,250 tweets (750 per class)

Validation set: 1,500 tweets (500 per class)

The dataset is carefully split to maintain balance across sentiment classes, avoiding class
imbalance. An additional set of 2,514 tweets is provided in a separate file but was not used
during the baseline experiments. This dataset is ideal for training the sentiment analysis

model due to its size, diversity, and well-structured labeling.

2. Text Preprocessing

Due to the nature of raw text data, especially in regional languages like Marathi,

preprocessing is a critical step. The following NLP techniques are employed to clean and

prepare the text for the classification model:

e Tokenization: The process of breaking down the input text into individual words or
tokens is crucial for analyzing text. For this, the NLTK library is used to tokenize Marathi
sentences into words.

e Stop-word Removal: Stop-words (common words that do not contribute significantly to
the meaning of the text, such as “&ﬂ%”, “Eﬁ?ﬁ” in Marathi) are removed to reduce noise
and improve the focus on sentiment-bearing words.

e Normalization: The text is cleaned by removing special characters, punctuation, and
numbers, and by standardizing words that have various forms due to Marathi’s rich
morphology.

These preprocessing steps ensure that the text is in a clean and standardized format, suitable

for feature extraction and model training.
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3. Feature Extraction

Once the text has been preprocessed, it is transformed into a numerical format suitable for
machine learning. This is done using the CountVectorizer technique from Scikit-learn:
CountVectorizer: This technique converts the cleaned text into a bag-of-words
representation, where each unique word in the corpus is treated as a feature. The vectorizer
counts the occurrences of each word in the text and transforms it into a numerical matrix that
can be used for classification. This method captures the frequency of words across

documents, which is crucial for the model to understand word importance and patterns.

4. Multinomial Naive Bayes Algorithm
For sentiment classification, Multinomial Naive Bayes (MNB) is chosen as the machine
learning model. This algorithm is well-suited for text classification tasks where the features

are word counts or frequencies.

Why Multinomial Naive Bayes?

Multinomial Naive Bayes is particularly effective in dealing with text data because it models
the probability of a word belonging to a particular class (sentiment) based on its frequency in
the text. It assumes that each word contributes independently to the sentiment of the text,
making it computationally efficient and suitable for large datasets. The algorithm works by
estimating the conditional probability of a class given the features (words), and it is known
for its strong performance in document classification tasks. Additionally, it scales well with

larger datasets and provides reliable results.

5. Model Training and Evaluation
The Multinomial Naive Bayes model is trained on the preprocessed and vectorized Marathi
text from the training dataset. The model learns to associate word frequency patterns with

sentiment categories (positive, neutral, and negative).

The model’s performance is evaluated using the validation and test datasets. Classification
reports are generated to measure key performance metrics, such as accuracy, precision,
recall, and F1-score, for each sentiment class. Additionally, confusion matrices are plotted to

visualize the model’s performance in correctly classifying the sentiment categories.
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6. Sentiment Prediction

Once trained, the system allows users to input Marathi text and receive real-time sentiment

predictions. The user’s input is preprocessed, vectorized, and classified using the trained

Multinomial Naive Bayes model. This functionality demonstrates the practical applicability

of the system in predicting sentiment from unseen Marathi text data.

1.5 Scope of The Project

The scope of this project centers on the development and implementation of a sentiment

analysis system for Marathi text using traditional machine learning techniques, specifically

logistic regression. The project is designed to provide a practical and scalable solution for

classifying sentiment as positive, neutral, or negative. The main aspects covered within the

scope include:

1.

Marathi Text Processing:
This project focuses on handling text data in the Marathi language, which includes
adapting standard NLP preprocessing techniques like tokenization, stop-word removal,

and normalization for Marathi-specific text characteristics.

Sentiment Classification:
The sentiment analysis is restricted to classifying text into three categories—positive,
neutral, and negative. The Multinomial Naive Bayes model is trained to work on Marathi

text and is evaluated based on its ability to perform this multiclass classification.

Dataset and Domain:

The project uses a labeled dataset of Marathi text, collected from publicly available
sources such as social media, reviews, or blogs. The dataset is balanced to include
examples of positive, neutral, and negative sentiment. However, the dataset is limited to

the domain of general opinions and may not cover specialized fields.
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4. Machine Learning Model:
While the project focuses on using Multinomial Naive Bayes, the framework developed
in this study can be expanded to accommodate other machine learning or deep learning
models in the future. The primary scope, however, is to demonstrate the effectiveness of
Multinomial Naive Bayes when coupled with proper preprocessing in a low-resource

language environment.

5. Evaluation and Performance Metrics:
The project aims to evaluate the performance of theMultinomial Naive Bayes model
using common evaluation metrics such as accuracy, precision, recall, and F1-score. The
performance is tested against the dataset prepared, but its scope does not include

real-time deployment or handling of unseen, highly specialized forms of Marathi.

6. Limitations:
The scope of this project is limited to the Marathi language, and the methods developed
may not generalize directly to other low-resource languages without modifications.
Additionally, while this project focuses on Multinomial Naive Bayes, it does not explore
more advanced deep learning models such as neural networks or transformers, which

could potentially yield higher accuracy in sentiment analysis tasks.

By focusing on these core areas, the project lays the groundwork for sentiment analysis in
Marathi and provides a model that can be extended or improved upon in future studies. The
project does not extend to developing complex production-level systems or addressing highly
domain-specific sentiments, keeping its scope limited to general sentiment classification

tasks in Marathi.
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Chapter 2

Review of Literature

Paper [1] explored the effectiveness of the Multinomial Naive Bayes (MNB) algorithm in
sentiment analysis. Their work focused on the automatic classification of text, specifically movie
reviews, into positive and negative sentiments using machine learning techniques. The authors
highlight the importance of efficient document sorting due to the overwhelming growth of online
textual data. The MNB model was applied with a "bag of words" approach, which takes word
frequency into account rather than simple word occurrence, thus improving classification
accuracy compared to simpler Naive Bayes models like the Bernoulli Naive Bayes (BNB). To
enhance performance, they incorporated Term Frequency-Inverse Document Frequency
(TF-IDF) for weighting words based on their importance, resulting in an improved model

performance.

The experiments were conducted on a dataset of movie reviews, and the results showed an initial
accuracy of 91%. While the model proved to be computationally efficient and effective on large
datasets, one of the key limitations identified was overfitting on smaller datasets. Furthermore,
the authors pointed out that while MNB provides a robust method for sentiment analysis, future
work could involve integrating advanced techniques like deep learning to further enhance
accuracy, particularly in more complex text scenarios. Despite these limitations, the research

demonstrates the strong potential of MNB for real-time sentiment classification tasks.
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Chapter 3

System Analysis

3.1 Functional Requirements

The functional requirements of the system are the key operations and features that the
sentiment analysis system for Marathi text is expected to perform. These requirements are
essential for the successful implementation and functionality of the sentiment classification

model. The following are the major functional requirements of the system:
1. Input Text Handling:

e The system must accept raw Marathi text as input from users.

e [t should be able to handle a variety of text formats, such as plain text input,
social media posts, or online reviews, provided in Marathi.

e The system must support the processing of multiple sentences or paragraphs at a

time.
2. Text Preprocessing:

e Tokenization: The system should break the input Marathi text into tokens or
individual words, ensuring that punctuation and special characters are
appropriately handled.

e Stop-word Removal: It should remove Marathi stop-words (e.g., “@ﬂ%”, “Eﬁ?ﬁ”).

e Normalization: The system must normalize the text by converting inflected or
non-standardized words into a standard form.

e Special Character and Noise Removal: The system should remove unnecessary
symbols, numbers, and irrelevant characters that do not contribute to sentiment

classification.

3. Feature Extraction:
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e The system should convert the preprocessed text into numerical features using
techniques like Term Frequency-Inverse Document Frequency (TF-IDF) or
bag-of-words representation, making the text data usable for machine learning.

e It should accurately weigh words according to their frequency and importance

within the context of sentiment.

4. Sentiment Classification:

e The system must classify the sentiment of the input Marathi text as either
positive, neutral, or negative.

e The logistic regression model should be trained to output the probability of each
sentiment class and predict the most likely sentiment based on the input features.

e The system should provide the sentiment label (positive, neutral, or negative) as

output for each text sample processed.

5. Model Training and Learning:

e The system must support the training of the logistic regression model using a
labeled dataset of Marathi text.

e The system must also support hyperparameter tuning, allowing for optimization
of the model’s performance based on evaluation metrics such as accuracy,

precision, recall, and F1-score.

6. Evaluation and Feedback:

e The system must provide performance metrics such as accuracy, precision, recall,
and F1-score for the sentiment classification model.

e [t should display the evaluation results after model training, enabling users to
assess how well the model is performing.

e The system should provide feedback on the classification of test samples to verify

its accuracy and reliability.
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3.2 Non Functional Requirements:

3.2.1 Performance Requirements

1. Accuracy of Sentiment Classification:
The system must achieve high accuracy in classifying Marathi text as positive, neutral, or
negative. The performance should be evaluated using metrics such as precision, recall,
and Fl-score. The goal is to maintain at least 80% accuracy on a balanced test set to

ensure the system is reliable in real-world applications.

2. Processing Speed:
The system must be able to process and classify text efficiently. Given that Marathi text
datasets may vary in size, the sentiment analysis model should perform with a reasonable

processing time for both training and prediction tasks. The system should:

e Process input text and provide sentiment classification within a few seconds for
individual sentences or small text samples.
e Handle larger datasets (e.g., batch classification) within a reasonable time frame,

ensuring that the classification task completes without significant delays.

3. Scalability:
The system should be scalable, allowing it to handle increasing amounts of Marathi text
data without significant degradation in performance. The model must be capable of

processing larger datasets or retraining with additional data as needed.

4. Memory and Resource Usage:
The system should be optimized for memory and resource consumption, particularly in
environments with limited computational power. It should efficiently manage the
system’s memory, especially during preprocessing and model training, to prevent
excessive resource usage. The feature extraction and training process should be

lightweight enough to run on standard machines.



3.2.2 Software Quality Attributes

Maintainability:

The system must be designed for easy maintainability, allowing for updates, such as
improvements to the preprocessing pipeline or model enhancements. The sentiment
analysis code should be modular, ensuring that each component (e.g., preprocessing,

feature extraction, classification) can be modified independently.

Extensibility:

While the current project focuses on using Multinomial Naive Bayes, the system should
be designed with extensibility in mind, allowing for the integration of other machine
learning models (e.g., decision trees, support vector machines, or deep learning models)

in the future.

Reusability:

The preprocessing and feature extraction components should be reusable across other
NLP tasks involving Marathi text. The system should be designed in such a way that
these components can be easily adapted for other machine learning applications, such as

text classification or topic modeling, involving Marathi language data.

Reliability:

The system must reliably produce sentiment classifications across various text inputs. It
should consistently handle different forms of Marathi text, including informal language,
spelling variations, and different sentence structures, without breaking or producing

erroneous results.

Portability:

The system should be portable and able to run on different platforms or environments
without extensive reconfiguration. This includes compatibility with standard data science
environments (e.g., Python, Jupyter notebooks, and libraries such as scikit-learn and

NLTK) so that the system can be used in various academic and industrial settings.
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6. Accuracy and Robustness:
The system should not only perform with high accuracy but also be robust to variations
in Marathi text. It should handle errors or noise in the text (such as typos or slang)
without a significant drop in performance. This robustness is critical for dealing with

real-world data, which may be noisy or unstructured.

7. Documentation and Clarity:
Proper documentation must be provided to ensure that the system’s functionality is clear
and understandable to future users or developers. This includes documenting the steps

involved in text preprocessing, model training, and evaluation,.

3.3 Specific Requirements:

Hardware :
Minimum Requirements

CPU: Dual-core processor (Intel i5 or AMD Ryzen 5)
RAM: 8 GB
Storage: 256 GB SSD
Network: Stable internet connection (for downloading datasets and libraries)
Recommended Requirements
CPU: Quad-core processor (Intel i7 or AMD Ryzen 7)
RAM: 16 GB
Storage: 512 GB SSD
Network: Stable internet connection (for collaborative work and data fetching)
Software :
Operating System

Windows: Windows 10 or later
Programming Language

Python: Version 3.7 or later
Libraries and Packages

Data Handling

pandas: For data manipulation and analysis

numpy: For numerical operations
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Natural Language Processing (NLP)

nltk: For tokenization and natural language processing tasks

re: Built-in module for regular expressions

Machine Learning

scikit-learn: For implementing the Multinomial Naive Bayes algorithm

Data Visualization

matplotlib: For plotting graphs and visualizing results

seaborn: For enhanced data visualization

Other Utilities

joblib: For saving and loading models

IDE or Text Editor

Google Colab Notebook: Recommended for interactive data analysis and visualization

PyCharm: A powerful IDE for Python development

3.4 Use-Case Diagrams and description

Input text

Click on Check
Sentiment

<include>>
/vv include:
<include>>

Perform

Do
o0

» sentiment
>

_—
S

analysis

- <cincludess =Y

]

Normalize text

Remove
stopwords

Confusion
Matrix

— X

Figure 1: Use Case Diagram for sentiment analysis

There are two actors: the User and the System. The User interacts with the system by

providing input through Input Text and Click on Check Sentiment. The system then begins

with Preprocess Text, which involves steps such as Normalize Text, Tokenize Text, and

Remove Stopwords to prepare the input for analysis.Then it executes the Perform Sentiment

Analysis. The system completes the process with the Give Results use case, displaying the

sentiment outcome along with a Confusion Matrix to evaluate the accuracy of the analysis.
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Chapter 4
Analysis Modeling

4.1 Class Diagram

= Liser = Sentiment analyzer = Dataset
String: Text String: Text String: tweet
String: sentiment String: Sentiment Integer: label
; tokenizer: Count\ectorizer
submit_text() _— preprocess()
model: MultinomialMB
tokenize()
preprocess_text()
train{)
marathi_sent_analysis()
test()
validate()

Figure 2: Class Diagram for sentiment analysis

In this class diagram, there are three main classes: User, Sentiment Analyser, and Dataset.
The User class has two attributes: text and sentiment, both as strings, and it uses the function
submit_text() to provide input. The Sentiment Analyser class also has the attributes text and
sentiment as strings, along with a tokenizer implemented using CountVectorizer, and a model
using MultinomialNB. It includes the functions preprocess text() to clean and prepare the
input and marathi_sent analysis() to perform sentiment analysis. The Dataset class contains
two attributes: tweet (a string) and label (an integer representing sentiment), with functions
preprocess(), tokenize(), train(), test(), and validate() for handling and preparing data for

sentiment analysis.
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4.2 Functional Modeling

Data Flow Diagram

(a)Training (b)Prediction
Training Input
Data Text
A 4 h J
Pos/Neg/Neutral

Labels

Features Ventures

Naive Bayes

Training

Classifier

Pos/MNeg/MNeutral
Labeled
Text

Figure 3: Data Flow Diagram for sentiment analysis

In this data flow diagram, there are two main parts: Training and Prediction. In the Training
phase, the process starts with Training Data, which undergoes Feature Extraction to convert
the raw text into numerical features. These features are labeled with Pos/Neg/Neutral
sentiment labels, and the Training process uses these labeled features to train the sentiment
analysis model. In the Prediction phase, the system receives an Input Text, performs Feature
Extraction to generate features, and then passes them through the Multinomial Naive Bayes
Classifier. The classifier outputs the predicted sentiment as Pos/Neg/Neutral text based on the

analysis.
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Chapter 5
Design

5.1 Architectural Design

A. Data Collection

(hmadalatad ek 1 ------------------------ "
1 ]
: 1. Removing :
1 . punctuations g
B. Pre-Processing |— ’
' g numbers & i
! symbols. !
: l 2. Converting into :
: lowercase. A
1 - 3. Tokenization. '
! C. Vectorization 4. Removing :
1 Stopwords. 1
] 1771 ]
: L NLP 5. Lemmatizing. :
RO | WSS SRRty mermrry ey gy —gr—premgresy J

D. Applying ML

Classification Algorithms Evaluation

Figure 4: Architectural Diagram for sentiment analysis

In this architectural diagram, the process begins with Data Collection, where the raw data is
gathered. This data moves to the Preprocessing stage, where it undergoes several steps:
removing punctuation, numbers, and symbols, normalization, tokenization, and stopword
removal to clean the text. After preprocessing, the data is passed to the Vectorization step,
where the CountVectorizer is used to convert the text into numerical feature vectors. Then,
the system proceeds to Applying ML Classification Algorithm, where MultinomialNB is
applied to classify the text into categories such as positive, negative, or neutral. Finally, the

model's performance is assessed during the Evaluation phase.
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5.2 User Interface Design

The user interface is implemented using Streamlit, a Python framework that allows for the
rapid development of interactive web applications. The primary goal of the user interface is
to provide a simple, intuitive way for users to input Marathi text and obtain sentiment
predictions (positive, neutral, or negative). The design of the interface ensures ease of use
while maintaining responsiveness and clarity. The following components make up the

design:

1. Title and Introduction

The interface starts with a clear title and a brief description of the system’s purpose:

Title: "Marathi Sentiment Analysis"
Description: The system prompts the user to enter a Marathi sentence to determine its
sentiment (positive, neutral, or negative).

This ensures that users immediately understand the function of the application.

st.title('Marathi Sentiment Analysis')
st.write('Enter a Marathi sentence and get its sentiment label.')

2. User Input Field
The main interaction point for the user is the text input field. This field allows users to enter a
Marathi sentence. The input field is designed to handle simple sentences, ensuring that users

can quickly submit text for analysis without confusion.
user_input = st.text_input('Enter Sentence:', ''")

3. Submit Button
Next to the input field, a Submit button is provided to allow users to submit their sentence for
sentiment analysis. Upon clicking the button, the system processes the text and predicts its

sentiment using the trained machine learning model.
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Action: When the user clicks the "Submit" button, the system triggers the backend function
that processes the text, vectorizes it, and classifies it using the Multinomial Naive Bayes
model.

Validation: If no input is provided, the system prompts the user to enter a valid sentence

before submitting.

if st.button("Submit"):
if user_input:
sentiment = predict_sentiment(user_input)
# Output sentiment prediction
else:
st.write("Please enter a sentence.")

4. Displaying Sentiment Prediction
Once the user submits a sentence, the system outputs the predicted sentiment. The result is
displayed on the same page under the input field. The sentiment is classified into one of the

following categories:

e Positive

e Negative

e Neutral

This provides immediate feedback to the user. The interface ensures that the result is
displayed in a user-friendly format, making it clear which sentiment has been predicted for

the input text.

if sentiment ==

sentiment_label = "Positive"
elif sentiment == -1:

sentiment_label = "Negative"
else:

sentiment_label = "Neutral”

st.write(f'Predicted Sentiment: {sentiment_label}')

5. Error Handling and Feedback
The interface includes basic error handling to ensure that users enter valid text. If the input

field is left blank and the user clicks "Submit," a message is displayed, prompting the user to
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input a valid sentence. This prevents any confusion and enhances the user experience by

ensuring proper input validation.

else:
st.write("Please enter a sentence.")

User Experience (UX) Considerations

e Simplicity: The interface is minimalist, ensuring users can interact with it easily without
any distractions. Only essential elements such as input fields, buttons, and result displays
are included.

e Real-time Feedback: The sentiment prediction is displayed instantly after the user
submits the sentence, ensuring a smooth and interactive experience.

e Responsive Design: Since the interface is built using Streamlit, it is responsive and works

across various devices, including desktops and mobile browsers.

Marathi Sentiment Analysis

ntence and get its sentiment label

Figure 5: Neutral Sentiment Prediction

The UI allows users to input Marathi text, such as e Iy m 3H éa:ﬁ'ﬂﬁ%
P AHiFST Heriderag 311%", (St. Francis Institute of Technology is an Engineering

College) and upon clicking "Submit" button, it displays the predicted sentiment as "Neutral".

26



Marathi Sentiment Analysis

Enter rathi sentence and get its sentiment label.

Predicted Sentiment: Positive

Figure 6: Positive Sentiment Prediction

The UI allows users to input Marathi text, such as "3{Tol Td1- a5 HBAMHR o QU G
ATedl EF]HT," (After getting his new bike today Samit was very happy) and upon clicking the

"Submit" button, it displays the predicted sentiment as "Positive."

Marathi Sentiment Analysis

Predicted Sentiment: Negative

Figure 7: Negative Sentiment Prediction

The UI allows users to input Marathi text, such as =T %Tﬂ S T I W, 3T
Sie-Ta1 3 fayr Eﬁ?ﬂ," (Jaden was of firm belief that he did good by being envious of Samit)

and upon clicking the "Submit" button, it displays the predicted sentiment as "Negative."
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Chapter 6

Implementation

6.1 Algorithms

Multinomial Naive Bayes Algorithm

Multinomial Naive Bayes (MNB) is a supervised learning algorithm based on the application
of Bayes' Theorem. It is particularly well-suited for classification problems involving
discrete features, especially in text classification tasks where word frequencies are used as
features. The Multinomial Naive Bayes algorithm is an extension of the basic Naive Bayes
classifier, specifically designed to handle multiclass classification where the features

represent counts or frequency of occurrences (such as words in a document).

1. Bayes' Theorem
At the core of the Naive Bayes algorithm is Bayes' Theorem, which calculates the probability

of a class given a feature vector:

P(X|Cy) - P(Ck)

P(CLX) =
Where:
o P(CHX) s the posterior probability of class C given the feature vector X
o P(XI|Cy) is the likelihood of the feature vector X given class Ci

o P(CL) is the prior probability of class C

o P (X ) is the evidence or the total probability of the feature vector.

Naive Bayes is considered "naive" because it assumes that all features are conditionally

independent of one another given the class. Despite this strong assumption of independence,
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Naive Bayes has been shown to work very well in practice, especially in text classification

problems.

2. Multinomial Naive Bayes for Text Classification
In the context of text classification, the Multinomial Naive Bayes algorithm models the data
as a multinomial distribution, where the features represent word counts or term frequencies

in a document.

Features (X): In text classification, the features X = (I 1y L2y eeey 1?1'1) represent the
frequency of each word (or token) in the document. The word counts are obtained from the
preprocessed text, which may be converted into a term frequency vector using methods like

CountVectorizer or TF-IDF (Term Frequency-Inverse Document Frequency).

Classes (C): The classes represent the sentiment categories that the model is trying to predict

(for example, positive, neutral, and negative sentiment).

3. The Multinomial Distribution
In the Multinomial Naive Bayes algorithm, the probability of a document (feature vector)

given a class is modeled as a multinomial distribution:
P(X|C}) H P(z;|C)"
Where:
N (33'&|Ck) is the probability of the word €L occurring in class Cr

o Lj isthecountof word I in the document.

e The likelihood of the entire document is the product of the probabilities of all words in

that document, given the class Ci

The model learns the conditional probabilities P (:E'i|ck) by calculating the relative



frequency of each word in the training set for each class. Smoothing techniques like Laplace
Smoothing (also called add-one smoothing) are often used to handle zero probabilities when

a word does not appear in the training data for a particular class.

4. Classification Process

Once the model is trained, it predicts the class of a new document by applying Bayes’

theorem to compute the posterior probability for each class Ci , and assigns the document

to the class with the highest posterior probability:

o~

C = arg max P(Cy|X) = argn%waxP(ka) - P(CY)

Where:

o P(Ck) is the prior probability of class Ci (estimated from the training data as the

proportion of documents in each class).

o P(X|C) is the likelihood of the document belonging to class Ci , calculated from

the product of word probabilities conditioned on the class.

5. Application in This Project

In this project, the Multinomial Naive Bayes algorithm is applied to classify Marathi text
(tweets) into one of three sentiment classes: positive, neutral, or negative. The algorithm is
trained on the L3CubeMahaSent dataset, which contains manually labeled Marathi tweets.
The preprocessed text is transformed into word frequency vectors using CountVectorizer, and
the model predicts the sentiment by computing the likelihood of the text belonging to each

sentiment class.

Given the large size of the dataset and the nature of text data, Multinomial Naive Bayes is an
ideal choice due to its efficiency and suitability for handling sparse feature matrices, which

are common in text classification tasks.

30



6.2 Working of the project

The sentiment analysis system for Marathi text is implemented using a combination of data
preprocessing techniques, text vectorization, and the Multinomial Naive Bayes machine
learning model. The following steps describe how the project is structured and the workflow

for training and evaluating the model.

Step 1: Loading the Dataset

The first step involves loading the datasets for training, validation, and testing. The dataset
used contains Marathi tweets that are labeled with sentiment values. The training dataset is
used to train the model, the validation dataset is used for model evaluation during training,

and the test dataset is reserved for final performance testing.

import pandas as pd

# Load datasets

train_df = pd.read_csv('train.csv')
val df = pd.read csv('valid.csv')
test _df = pd.read csv('test.csv')

# Display the first few rows of each dataset
print(train_df.head())

print(val _df.head())

print(test_df.head())

Step 2: Analyzing the Dataset
Before proceeding with model training, it is important to analyze the datasets for any missing
values and to understand the data types in each dataset. This step ensures that the data is

clean and ready for processing.

# Check for missing values and data types in each dataset
print(train_df.info())

print(val df.info())

print(test_df.info())
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Step 3: Loading the Marathi Stopwords List
A list of custom Marathi stopwords is loaded from an external text file. These stopwords are
words that do not carry significant meaning for sentiment analysis (such as common words

like "GI'I% " ”ék_‘il") and need to be removed during text preprocessing to reduce noise.

# Load custom Marathi stopwords from the text file
def load_stopwords(file_path):
with open(file path, 'r', encoding='utf-8') as f:
stopwords = f.read().splitlines()
return set(stopwords)

marathi_stopwords = load_stopwords('marathi_stopwords.txt')

Step 4: Text Preprocessing

To prepare the raw text for machine learning, several preprocessing steps are applied. These
include:

e Punctuation Removal: Removing punctuation from the text.

e Number Removal: Removing numbers from the text.

e Tokenization: Splitting the text into individual words.

e Stopword Removal: Removing Marathi stopwords to focus on sentiment-related words.

import re
import nltk

# Download necessary NLTK resources
nltk.download('punkt")

# Define a function for preprocessing text
def preprocess_text(text):

text = re.sub(r'[*\w\s]', '', text) # Remove punctuation

text = re.sub(r'\d+', "', text) # Remove numbers

tokens = nltk.word tokenize(text) # Tokenization

tokens = [word for word in tokens if word not in marathi_stopwords] #
Remove stopwords

return ' '.join(tokens)

# Apply preprocessing to each dataset

train_df['cleaned_text'] = train_df[ 'tweet'].apply(preprocess_text)
val df['cleaned text'] = val _df['tweet'].apply(preprocess_text)
test_df['cleaned text'] = test df['tweet'].apply(preprocess text)
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Step 5: Text Vectorization

After preprocessing, the text data is transformed into numerical form using CountVectorizer.
This step converts the cleaned text into a bag-of-words representation, where each word in
the dataset is treated as a feature. This vectorized format is essential for machine learning

models to process text data.

from sklearn.feature_extraction.text import CountVectorizer

# Initialize CountVectorizer
vectorizer = CountVectorizer()

# Vectorize training data
X_train_vectorized = vectorizer.fit transform(train_df['cleaned text'])
y_train = train_df['label’]

# Vectorize validation and testing data

X_val vectorized = vectorizer.transform(val df['cleaned text'])
y_val = val df['label’]

X_test_vectorized = vectorizer.transform(test_df['cleaned text'])
y _test = test _df['label’]

Step 6: Model Training
The Multinomial Naive Bayes model is chosen as the machine learning algorithm for this
project. The model is trained on the vectorized training data (word frequency vectors) and

corresponding sentiment labels.

from sklearn.naive bayes import MultinomialNB

# Initialize and train the model
model = MultinomialNB()
model.fit(X_train_vectorized, y train)

Step 7: Prediction and Evaluation

Once the model is trained, it is evaluated using the validation and test datasets. Predictions
are made, and the model's performance is measured using a classification report and
confusion matrix. The classification report provides detailed metrics such as precision, recall,

F1-score, and accuracy for each sentiment class (positive, neutral, negative).
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from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

# Predict on validation set
y_val pred = model.predict(X_val vectorized)

# Classification report for validation set
print("Validation Classification Report:")
print(classification_report(y_val, y val pred))

# Confusion matrix for validation set

cm_val = confusion_matrix(y _val, y val pred)
sns.heatmap(cm_val, annot=True, fmt='d', cmap='Blues’,
xticklabels=np.unique(y_train), yticklabels=np.unique(y_train))
plt.title('Confusion Matrix - Validation Set')
plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.show()

# Predict on test set
y_test_pred = model.predict(X_test_vectorized)

# Classification report for test set
print("Test Classification Report:")
print(classification_report(y_test, y test_pred))

# Confusion matrix for test set

cm_test = confusion matrix(y_test, y test pred)
sns.heatmap(cm_test, annot=True, fmt='d', cmap='Blues’,
xticklabels=np.unique(y_train), yticklabels=np.unique(y_train))
plt.title('Confusion Matrix - Test Set')

plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.show()

Step 8: Sentiment Prediction
Finally, a sentiment prediction function is created to classify user-input text. The function
preprocesses the text, vectorizes it, and predicts its sentiment using the trained model. This

allows the model to be used for real-time sentiment classification.

def predict_sentiment(text):
cleaned text = preprocess_text(text)
vectorized text = vectorizer.transform([cleaned text])
prediction = model.predict(vectorized text)
return prediction[@]
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Chapter 7

Conclusion

This project successfully demonstrates the application of sentiment analysis for Marathi text, a
low-resource language, using a combination of Natural Language Processing (NLP) techniques
and a machine learning model. By utilizing the L3CubeMahaSent dataset, the largest publicly
available dataset for Marathi sentiment analysis, and implementing the Multinomial Naive Bayes
algorithm, the system effectively classifies Marathi tweets into positive, neutral, and negative

sentiment categories.

The project's success lies in its carefully designed preprocessing pipeline, which includes
tokenization, stop-word removal, and normalization, all of which are tailored to the linguistic
intricacies of Marathi. The use of CountVectorizer for feature extraction further enabled the
model to capture the frequency of words and their impact on sentiment classification. The
Multinomial Naive Bayes algorithm, chosen for its efficiency and strong performance in text

classification tasks, proved to be effective in handling the sparse nature of word frequency data.

Through thorough training and evaluation using the training, validation, and test splits of the
L3CubeMahaSent dataset, the system demonstrated reliable sentiment classification
performance. The use of well-established evaluation metrics, such as accuracy, precision, recall,
and Fl-score, ensured a comprehensive understanding of the model's strengths and areas for

improvement.

In conclusion, this project contributes to the growing field of Natural Language Processing for
low-resource languages like Marathi. It highlights the potential of traditional machine learning
algorithms in achieving high accuracy and scalability for sentiment analysis. Future work could
focus on exploring more advanced models such as transformers, expanding the dataset, or further
refining the preprocessing techniques to enhance performance. This system provides a
foundational approach that can be built upon for more sophisticated sentiment analysis systems

and real-world applications in Marathi language processing.
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